Monitoring the COVID-19 Pandemic in sub-Saharan Africa: paying attention to health facility admissions and deaths
Wednesday 10th June 2020
Chairpersons: Dr Riitta Dlodlo and Dr Jeremiah Chakaya

Union webinars are member-led, one of the many benefits of being a Union member.
Join us in championing change for lung health.
MEMBERSHIP.THEUNION.ORG/REGISTER
Presentation

1. **COVID-19: Origins, Global Pandemic, Diagnosis and Treatment.**
 Leonardo Martinez, Stanford University, School of Medicine

2. **Monitoring COVID-19 in health facilities in Africa**
 Anthony D Harries, The Union, Paris, France, London School of Hygiene & Tropical Medicine, UK

Questions and Answers will follow the presentation.
COVID-19: Origins, Global Pandemic, Diagnosis, and Treatment

Leonardo Martinez
Stanford University, School of Medicine
LeoMarti@Stanford.edu
Origin of the COVID-19 pandemic

- First cases likely developed in late November to early December 2019 in Wuhan, China
- First reported case was reported in early January 2020
- Linked epidemiologically to a seafood and wet animal market

Zhu et al, *NEJM* 2020
Origin of the COVID-19 pandemic

• By January 7, 2020, scientists isolated the coronavirus

• Full genome sequence data enabled the rapid development of RT-PCR diagnostic tests specific for this novel coronavirus
Global Spread

• By the end of January, cases were confirmed in >25 countries

• Currently, >7 million cases reported on all 6 continents
World Health Organization

• Declared a Public Health Emergency of International Concern on January 30, 2020

• Declared a global pandemic on March 11, 2020
Incubation Period of COVID-19

- Incubation: time from infection to disease onset
- \(\sim 4-5\) days; however, different estimates (range is between 2 and 14 days)
- Among patients, 99% develop symptoms within 14 days

Spectrum of COVID-19 disease

• Asymptomatic and paucisymptomatic disease is common

• Mild disease

• Severe and critical disease

Wu et al, *JAMA* 2020
COVID-19 Diagnosis

- Nasopharyngeal, oropharyngeal, and nasal swabs are the preferred specimen type

- Some other sampling types (sputum, BAL) are also acceptable under certain circumstances

- Cepheid Xpert platform

- Antibody testing
Drug Treatments

• Many drugs for treatment being tested
 – Remdesivir
 – Hydroxychloroquine/chloroquine
 – Lopinavir/ritonavir
Drug Treatments

• Recent positive randomized trial result for Remdesivir (200 mg day 1, 100 mg daily for up to 9 additional days) in hospitalized COVID-19 patients

• Reduced time to recovery (median, 11 vs 15 days)

• Reduced mortality (HR, 0.70; 95% CI, 0.47–1.04)

Beigel et al, NEJM 2020
Drug Treatments

• Hydroxychloroquine

• Observational study (N=1,446) suggests similar mortality risk in hospitalized patients

• Trials are needed

Geleris et al, NEJM 2020
Drug Treatments

- Lopinavir/ritonavir
- Randomized trials

Cao et al, *NEJM* 2020

- No benefit in time to clinical improvement
- Lower mortality (19.2% vs. 25.0%) but low sample size precludes meaningful conclusions

Cao et al, *NEJM* 2020
Other therapies under evaluation

• BCG vaccination
 – BCG has non-specific effects on several diseases other than tuberculosis possibly through ‘trained immunity’
 – Several ongoing clinical trials in Australia, Germany, and the Netherlands

• Plasma therapy

• Heparin, other antiviral drugs and anti-inflammatory drugs
Limitations of Global Case and Mortality Reporting

- Includes only reported diagnosed COVID-19 patients
- Underestimate of true burden; many undiagnosed cases are asymptomatic or paucisymptomatic or never reported
Monitoring COVID-19 in health facilities in Africa

Anthony D Harries
The Union, Paris, France
London School of Hygiene & Tropical Medicine, UK

adharries@theunion.org
Case definition of COVID-19

- New onset dry cough
- AND New onset fever
- AND new onset shortness of breath

- Maybe supplement this with alterations in smell and taste [G Spinato et al, JAMA 2020]
Health facility monitoring tool

<table>
<thead>
<tr>
<th>Date of Admission</th>
<th>COVID ID no.</th>
<th>Suspected Confirmed</th>
<th>Age</th>
<th>Sex</th>
<th>HIV status:</th>
<th>ART</th>
<th>TB Treatment</th>
<th>Previous TB</th>
<th>HTN</th>
<th>DM</th>
<th>CVD</th>
<th>Smoker</th>
<th>Given O₂</th>
<th>Given Medication</th>
<th>HDU</th>
<th>Mechanical Ventilation</th>
<th>Date of Discharge</th>
<th>DIED</th>
<th>Date of Death</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 June</td>
<td>1</td>
<td>S</td>
<td>50</td>
<td>M</td>
<td>Neg</td>
<td>NA</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>20 June</td>
<td>No</td>
<td>N/A</td>
</tr>
<tr>
<td>10 June</td>
<td>2</td>
<td>S</td>
<td>45</td>
<td>F</td>
<td>Neg</td>
<td>NA</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>15 June</td>
<td>No</td>
<td>N/A</td>
</tr>
<tr>
<td>11 June</td>
<td>3</td>
<td>C</td>
<td>65</td>
<td>M</td>
<td>Neg</td>
<td>NA</td>
<td>No</td>
<td>No</td>
<td>DM</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>N/A</td>
<td>Yes</td>
<td>19 Jun</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 June</td>
<td>4</td>
<td>C</td>
<td>62</td>
<td>M</td>
<td>Neg</td>
<td>NA</td>
<td>No</td>
<td>No</td>
<td>HTN</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>22 June</td>
<td>No</td>
<td>N/A</td>
</tr>
<tr>
<td>11 June</td>
<td>5</td>
<td>C</td>
<td>53</td>
<td>M</td>
<td>Pos</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>18 June</td>
<td>No</td>
<td>N/A</td>
</tr>
<tr>
<td>11 June</td>
<td>6</td>
<td>S</td>
<td>25</td>
<td>M</td>
<td>Neg</td>
<td>NA</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>19 June</td>
<td>No</td>
<td>N/A</td>
</tr>
<tr>
<td>12 June</td>
<td>7</td>
<td>S</td>
<td>32</td>
<td>F</td>
<td>Neg</td>
<td>NA</td>
<td>No</td>
<td>No</td>
<td>HTN</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>18 June</td>
<td>No</td>
<td>N/A</td>
</tr>
<tr>
<td>12 June</td>
<td>8</td>
<td>S</td>
<td>72</td>
<td>M</td>
<td>Neg</td>
<td>NA</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>N/A</td>
<td>16 Jun</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>12 June</td>
<td>9</td>
<td>C</td>
<td>68</td>
<td>F</td>
<td>Neg</td>
<td>NA</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>N/A</td>
<td>Yes</td>
<td>22 Jun</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 June</td>
<td>10</td>
<td>C</td>
<td>61</td>
<td>M</td>
<td>Pos</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>23 June</td>
<td>No</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Recording Dates

Dates of:
- Hospital admission
- Onset of illness
- Confirmed diagnosis
- Clinical recovery
- Hospital discharge
- Death

Provides information on:
- Duration of illness
- Bed occupancy
- Time to death
Demographics, pregnancy, source of infection

- **Gender**
- **Age**
- **Pregnancy**
- **Source**

- **Males** more affected than females

- **Case fatality in China** (JAMA 2020):
 - age <70 years, CF=<1%
 - age 70-79 years, CF=8%
 - age 80 + years, CF=15%

- **Case fatality in New York** (JAMA 2020):
 - age <60 years, CF=7%
 - age 60-69 years, CF=16%
 - age 70-79 years, CF=32%
 - age 80+ years, CF=54%
Risk factors and co-morbidities

- Hypertension
- Cardiovascular disease
- Diabetes mellitus
- Chronic lung disease
- Asthma
- Cancer
- Other (renal)
- Smoking

- Case fatality China (JAMA 2020): 10% cardiovascular disease; 7% diabetes mellitus; 6% chronic lung disease; 6% hypertension; 6% cancer

- Risk of death in UK (17,000 pts) increased risk with cardiovascular disease (37%); lung disease (17%); kidney disease (25%)
Co-morbidities and death

Data from one large Italian Hospital:

- No comorbidity 1% of the deaths
- 1 comorbidity 26% of the deaths
- 2 comorbidities 26% of the deaths
- 3+ comorbidities 47% of the deaths

Lorenzo G et al, JAMA 2020
Tuberculosis and HIV/AIDS

- BCG at birth
- Previous history of TB
- Currently with TB
- HIV-positive
- On ART
- First-line / second-line
- CPT / IPT

Comments:
- BCG protective? Clinical trials underway
- Previous TB – chronic respiratory disease and cardiac disease
- Active TB increased risk of COVID-19 (China)
- PLHIV – immune-suppressed
- ARV drugs – LPV/r said to possibly work but clinical trial in China showed no benefit (NEJM 2020)
Presenting symptoms

- Fever
- Night sweats
- Cough – dry, blood-stained
- Chest pain
- Shortness of breath
- Headache
- Other – “COVID Toes”
Alterations in smell and taste

130 patients interviewed:
- 64% with altered sense
- More common in women
- Median score 4 (max =5)
- 1/3 had blocked nose
- ¾ at same time/after first symptoms

- virus invades CNS through olfactory system and replicates in olfactory bulb
- nasal epithelial cells have highest expression of ACE2 receptors

Spinato G, et al. JAMA 2020, April 22
Physical examination

• One of the key things is to measure height and weight and obtain BMI (Weight/height2)

• BMI of 25-30 = overweight
 BMI > 30 = obese

• UK: Obesity associated with 37% increase risk of death
Medical interventions in hospital

- Oxygen +/- CPAP
- LPV/r; remdesivir
- Chloroquine (hydroxy-CQ)
- Steroids – anti-inflammatories
- Antibiotics
- Heparin/ aspirin

- Cough
- Pneumonia
- Respiratory failure
- Cytokine storm
 - Clotting disorder
 - Multi-organ failure
- Death

Day 0
Day 7
Day 14
Day 21
Further specialised services

- High dependency unit
- Intensive care unit
- Mechanical ventilation
- ICU services (dialysis)

New York City
Mechanical ventilation mortality:
18-65 years = 76%
>65 years = 97%
Progress

• Clinically recovered

• Hospital discharge [readmission]

• Absconded

• Hospital death
1. Daily reporting: cross-sectional analysis

<table>
<thead>
<tr>
<th>Date</th>
<th>Number of new cases (suspected and confirmed)</th>
<th>Number of new deaths</th>
<th>Number of cumulative cases (suspected and confirmed)</th>
<th>Number of cumulative deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 June</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>11 June</td>
<td>6</td>
<td>2</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>12 June</td>
<td>10</td>
<td>2</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>13 June</td>
<td>6</td>
<td>2</td>
<td>26</td>
<td>7</td>
</tr>
<tr>
<td>14 June</td>
<td>4</td>
<td>0</td>
<td>30</td>
<td>7</td>
</tr>
</tbody>
</table>
2. Monthly reporting: cohort analysis

<table>
<thead>
<tr>
<th>Year</th>
<th>Monthly cohort</th>
<th>Number admitted with COVID</th>
<th>Number discharged/absconded</th>
<th>Number died</th>
<th>Number still in hospital</th>
<th>Date of report</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>January</td>
<td>50</td>
<td>40</td>
<td>10 (20%)</td>
<td>0</td>
<td>1 March</td>
</tr>
<tr>
<td>2020</td>
<td>February</td>
<td>60</td>
<td>48</td>
<td>10 (17%)</td>
<td>2</td>
<td>1 April</td>
</tr>
<tr>
<td>2020</td>
<td>March</td>
<td>80</td>
<td>65</td>
<td>13 (16%)</td>
<td>2</td>
<td>1 May</td>
</tr>
<tr>
<td>2020</td>
<td>April</td>
<td>80</td>
<td>60</td>
<td>15 (19%)</td>
<td>5</td>
<td>1 June</td>
</tr>
<tr>
<td>2020</td>
<td>May</td>
<td>100</td>
<td>60</td>
<td>25 (25%)</td>
<td>15</td>
<td>1 July</td>
</tr>
</tbody>
</table>
3. Six-month reporting on COVID: Risk factors for death in COVID admissions

<table>
<thead>
<tr>
<th>Category</th>
<th>Variable</th>
<th>Total COVID n</th>
<th>Died n (%)</th>
<th>RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>Female</td>
<td></td>
<td></td>
<td>reference</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td></td>
<td></td>
<td>> 1.0</td>
</tr>
<tr>
<td>Age in years</td>
<td><60</td>
<td></td>
<td></td>
<td>reference</td>
</tr>
<tr>
<td></td>
<td>≥60</td>
<td></td>
<td></td>
<td>>1.0</td>
</tr>
<tr>
<td>Comorbidity</td>
<td>Normal BMI</td>
<td></td>
<td></td>
<td>reference</td>
</tr>
<tr>
<td></td>
<td>Obese BMI</td>
<td></td>
<td></td>
<td>>1.0</td>
</tr>
<tr>
<td></td>
<td>No diabetes</td>
<td></td>
<td></td>
<td>reference</td>
</tr>
<tr>
<td></td>
<td>Diabetes</td>
<td></td>
<td></td>
<td>>1.0</td>
</tr>
<tr>
<td>Smoking</td>
<td>No</td>
<td></td>
<td></td>
<td>reference</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
<td>??</td>
</tr>
<tr>
<td>Ventilation</td>
<td>No</td>
<td></td>
<td></td>
<td>reference</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
<td>>1.0</td>
</tr>
</tbody>
</table>
Conclusion

• Standardised and regular health facility monitoring and reporting

• Sentinel surveillance in hot spots / high-risk groups:
 - care homes for the elderly
 - congregate settings – e.g., prisons
 - health care workers
Poll Question
Questions?

Follow us on:
Twitter @TheUnion_TBLH
Facebook @TheUnionLungHealth & @UnionConference
LinkedIn The International Union Against Tuberculosis and Lung Disease
THANK YOU

Register now for next week’s webinars: Thursday 18 June, 14:00 - 15:00 CEST

COVID-19 and TB: Personal perspectives
This open discussion will focus in particular on the mental health challenges of dealing with TB and COVID-19 and issues around the stigma which so many survivors of both diseases face. Other topics will include how the TB response has been affected by COVID-19 and community responses to this.

Join us in championing change for lung health.
MEMBERSHIP.THEUNION.ORG/REGISTER